Abstract

Thermodynamic Casimir forces of film systems in the O(n) universality classes with Dirichlet boundary conditions are studied below bulk criticality. Substantial progress is achieved in resolving the long-standing problem of describing analytically the pronounced minimum of the scaling function observed experimentally in ^{4}He films (n=2) by Garcia and Chan [Phys. Rev. Lett. 83, 1187 (1999)] and in Monte Carlo simulations for the three-dimensional Ising model (n=1) by O. Vasilyev etal. [Europhys. Lett. 80, 60009 (2007)]. Our finite-size renormalization-group approach describes the film systems as the limit of finite-slab systems with vanishing aspect ratio. This yields excellent agreement with the depth and the position of the minimum for n=1 and semiquantitative agreement with the minimum for n=2. Our theory also predicts a pronounced minimum for the n=3 Heisenberg universality class.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call