Abstract

Single metallic nanostructures supporting strong Fano resonances allow more compact nanophotonics integration and easier geometrical control in practical applications such as enhanced spectroscopy and sensing. In this work, we designed a class of plasmonic split nanodisks that show pronounced Fano resonance comparable to that observed in widely studied plasmonic oligomer clusters. Using our recently developed "sketch and peel" electron-beam lithography, split nanodisks with varied diameter and split length were fabricated over a large area with high uniformity. Transmission spectroscopy measurements demonstrated that the fabricated structures with 15 nm split gap exhibit disk diameter and split length controlled Fano resonances in the near-infrared region, showing excellent agreement with simulation results. Together with the plasmon hybridization theory, in-depth full-wave analyses elucidated that the Fano resonances observed in the split nanodisks were induced by mode interference between the bright antibonding dipole mode of split disks and the subradiant mode supported by the narrow split gap. With the giant near-field enhancement enabled by the intensive Fano resonance at the tiny split gap, strong wavelength-dependent second harmonic generation was observed under near-infrared excitation. Our work demonstrated that single split nanodisks could serve as important building blocks for plasmonic and nanophotonic applications including sensing and nonlinear optics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call