Abstract

BackgroundPrecursor of nerve growth factor (proNGF) was previously considered biologically inactive; however, it has recently been identified as having important roles in the pathology of cancer development. AimThis study aimed to explore the therapeutic effects of proNGF siRNA on the proliferation, invasion, and anoikis of pancreatic cancer cells and determine the functions of proNGF. MethodsPancreatic ductal adenocarcinoma (PDAC) and paired paracancerous tissue samples were collected from 60 patients for evaluation of proNGF expression by immunohistochemistry staining, qPCR, and western blotting. PDAC cell proliferation, migration, apoptosis, and anoikis following proNGF siRNA knockdown were investigated in two pancreatic cancer cell lines, Panc-1 and Bxpc-3, using BrdU incorporation assays, EdU staining, Ki-67 immunofluorescence (IF) staining, wound-healing assays, transwell invasion assays, and EthD-1 IF staining. Autophagy-related proteins were also measured by western blotting. ResultsLevels of proNGF protein were higher in pancreatic cancer tissues and cells lines than those in paracancerous tissues and normal pancreatic duct epithelial cells, respectively. In vitro, ProNGF knockdown by siRNA led to significantly reduced cell proliferation, remarkably inhibited wound-healing, and reduced the number of invaded PDAC cells in migration and transwell assays. Treatment with proNGF siRNA also downregulated ATG5 and Beclin 1 protein levels, increased those of P62, and increased EthD-1 staining in PDAC cells. ConclusionProNGF expression is elevated in PDAC tissues and cell lines, and proNGF siRNA can inhibit cell proliferation, migration, and invasion, and promote anoikis of pancreatic cancer cells, in which decreased proNGF may participate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call