Abstract

In peripheral nervous system defect repair, a wide variety of strategies have been proposed for preparing functionalized nerve guidance conduits (NGC) with more complex configurations to obtain optimal repair effects. Longitudinally oriented fibrin cables were reported to form spontaneously during the initial stages of peripheral nerve regeneration in an empty NGC, which can direct the migration and proliferation of Schwann cells and promote axonal regrowth. Therefore, based on the biomimetic idea, we prepared a three-dimensional hierarchically aligned fibrin nanofiber hydrogel (AFG) through electrospinning and molecular self-assembly, resembling the architecture and biological function of the native fibrin cable and serving as an intraluminal filling to accelerate axon regeneration. We found that the AFG was a beneficial microenvironment to support SCs cable formation and accelerate axonal regrowth with improved motor functional recovery.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call