Abstract

This study conducted bibliometric and systematic analyses of the literature to map the application of life cycle assessment studies on photovoltaic panels, focusing on end-of-life alternatives. Seventy-six articles addressing management strategies, treatment, recycling, and utilization of the panels were examined. The results revealed a significant increase in the number of publications over time, particularly in high-impact journals. Sixteen end-of-life alternatives for the panels were identified, including recycling practices, material recovery, and landfills. All alternatives were analyzed regarding environmental, social, and economic impacts. Understanding the impacts of different end-of-life methods for solar panels is key in supporting government management and the implementation of effective policies and regulations. Additionally, it is necessary to consider the environmental and social effects, as well as ensure the protection of workers involved in related activities and prevent soil, water, and air contamination caused by different types of alternatives, such as dissolution and incineration. To enhance the recycling and recovery of elements from solar panels, scientific advancements and improvements in industrial infrastructure are necessary along with the implementation of a regional logistics approach that minimizes emissions resulting from transportation. The bibliometric analysis indicates that 65% of the studies were published within the last 3 years, and one quarter of the trending keywords of this period is “recycling”. This is particularly relevant to show a major area for research in the solar industry. By means of the systematic analysis, this study compiles and synthetizes the most recent and relevant alternatives for managing end-of-life photovoltaic panels. The comprehensive overview of the impacts associated with these alternatives contributes to the literature and practice of sustainability in the energy sector, providing support for informed decisions directed towards implementation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call