Abstract

P2-Na0.67Ni0.33Mn0.67O2 (NNMO) is regarded as a promising cathode candidate for sodium-ion batteries due to its high energy density. However, the electrochemical performance is hindered by Na+/vacancy order, irreversible P2–O2 phase transition at high voltage (>4.2 V), and harmful oxygen evolution. Herein, a synergetic Zn and Ti co-incorporation tactic is proposed for designing a Na0.67Ni0.29Zn0.04Mn0.63Ti0.04O2 (NNZMTO) cathode to overcome the above-mentioned challenges. First, the incorporated Ti heteroatom could break down Na+/vacancy order of NNMO by taking advantage of a similar ionic radius and substantially different Fermi levels with host Mn atom. Subsequently, the introduced Zn heteroatom could induce local Na–O–Zn configurations, buffer interlayer O2−–O2− electrostatic repulsion, as well as inhibit unfavorable phase transition. Moreover, the d10 band of Zn is lower than the oxygen states, and the Zn behaves like an s/p metal with oxygen, thus avoiding O2 release. Notably, in comparison with highly oxidized (Ni4+/Mn4+O6)δ− octahedron, the partial Na+ for charge neutrality in alkali metal layers could be well maintained in the as-designed (Zn2+/Ti4+O6)δ′−, which could be served as “pillars” to avoid layer gliding and structural collapse in the c-direction. As a result, an excellent electrochemical performance with high specific capacity of 90.9 mA h g−1 at 7 C could be retained for NNZMTO thanks to the synergetic effect from Ti and Zn incorporation. This study provides deep insights for designing superior layered cathode via conducting a rational cations co-incorporation strategy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call