Abstract

Selective catalytic oxidation of ammonia (NH3-SCO) has become an effective method to reduce ammonia (NH3) emissions, and is a key part to solve the problem of NH3 pollution. Nevertheless, the optimization of this technology’s performance relies heavily on innovation and the development of catalyst design. In this study, a SmCuAgTiOx catalyst with an asymmetric Ag-Ov-Ti-Sm-Cu ring active site was prepared and applied to the NH3-SCO reaction. The low conversion of Cu-based catalysts in NH3 at low temperature and the inherent low N₂ selectivity of Ag-based catalysts were solved. The successful creation of the asymmetric ring active site improved the catalyst’s reduction performance. Additionally, Cu, acting as an electron transfer medium, plays a crucial role in enhancing electron transfer within the asymmetric ring active site, thus increasing the redox cycle of the catalyst during the reaction. In addition, some lattice oxygen is lost in the catalyst, resulting in the formation of a large number of oxygen vacancies. This process stimulates the adsorption and activation of surface-adsorbed oxygen, facilitating the conversion of NH3 to an amide (NH2) intermediate during the reaction and reducing non-selective oxidation. The N2 selectivity was improved without significantly affecting the performance of Ag-based catalyst. In-situ diffuse reflectance fourier transform infrared spectroscopy (In-situ DRIFTS) analysis reveals that the SmCuAgTiOx catalyst primarily follows an “internal” selective catalytic reduction (iSCR) mechanism in the NH3-SCO reaction, complemented by the imide mechanism. The asymmetric Ag-Ov-Ti-Sm-Cu ring active site developed in this study provides a new perspective for efficiently solving NH3 pollution in the future.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.