Abstract

The electrocatalytic CO2 or CO reduction reaction is a complex proton-coupled electron transfer reaction, in which protons in the electrolyte have a critical effect on the surface adsorbed *H species and the multi-carbon oxygenate products such as ethanol. However, the coupling of *H and carbon-containing intermediates into C2+ oxygenates can be severely hampered by the inappropriate distributions of those species in the catalytic interfaces. In this work, the controlled distribution of highly dispersed CeOx nanoclusters is demonstrated on Cu nanosheets as an efficient CO electroreduction catalyst, with Faradaic efficiencies of ethanol and total oxygenates of 35% and 58%, respectively. The CeOx nanoclusters (2-5 nm) enabled efficient water dissociation and appropriate distribution of adsorbed *H species on the Cu surface with carbon-containing species, thus facilitating the generation of C2+ oxygenate products. In contrast, pristine Cu without CeOx tended to form ethylene, while the aggregated CeOx nanoparticles promoted the surface density of *H and subsequent H2 evolution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call