Abstract

In this case study, we investigate one teacher’s implementation of DNR-based combinatorics curriculum in their high school discrete mathematics class. By examining the teacher’s practices in whole-class discussions of two counting problems, we study how they advanced a variety of ways of thinking to support the development of a set-oriented way of thinking about counting. In particular, we find the teacher worked to build shared experience and understanding of mathematical ideas by grounding her teaching in students’ ways of understanding and leveraging students’ intellectual needs. In doing so, the teacher promoted a set-oriented way of thinking through attending to connections between sets of outcomes, counting processes, and formulas in student representations and justifications; elevated solutions employing process pattern generalization; and advanced the beliefs that counting problems can be solved in many ways and entail several types of mathematical activity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.