Abstract

BackgroundThe aim of the current study was to analyze the involvement of methyl-CpG binding proteins (MBDs) and histone modifications on the regulation of CD44, Cyclin D2, GLIPR1 and PTEN in different cellular contexts such as the prostate cancer cells DU145 and LNCaP, and the breast cancer cells MCF-7. Since global chromatin changes have been shown to occur in tumours and regions of tumour-associated genes are affected by epigenetic modifications, these may constitute important regulatory mechanisms for the pathogenesis of malignant transformation.MethodsIn DU145, LNCaP and MCF-7 cells mRNA expression levels of CD44, Cyclin D2, GLIPR1 and PTEN were determined by quantitative RT-PCR at the basal status as well as after treatment with demethylating agent 5-aza-2'-deoxycytidine and/or histone deacetylase inhibitor Trichostatin A. Furthermore, genomic DNA was bisulfite-converted and sequenced. Chromatin immunoprecipitation was performed with the stimulated and unstimulated cells using antibodies for MBD1, MBD2 and MeCP2 as well as 17 different histone antibodies.ResultsComparison of the different promoters showed that MeCP2 and MBD2a repressed promoter-specifically Cyclin D2 in all cell lines, whereas in MCF-7 cells MeCP2 repressed cell-specifically all methylated promoters. Chromatin immunoprecipitation showed that all methylated promoters associated with at least one MBD. Treatment of the cells by the demethylating agent 5-aza-2'-deoxycytidine (5-aza-CdR) caused dissociation of the MBDs from the promoters. Only MBD1v1 bound and repressed methylation-independently all promoters. Real-time amplification of DNA immunoprecipitated by 17 different antibodies showed a preferential enrichment for methylated lysine of histone H3 (H3K4me1, H3K4me2 and H3K4me3) at the particular promoters. Notably, the silent promoters were associated with unmodified histones which were acetylated following treatment by 5-aza-CdR.ConclusionsThis study is one of the first to reveal the histone code and MBD profile at the promoters of CD44, Cyclin D2, GLIPR1 and PTEN in different tumour cells and associated changes after stimulation with methylation inhibitor 5-aza-CdR.

Highlights

  • The aim of the current study was to analyze the involvement of methyl-CpG binding proteins (MBDs) and histone modifications on the regulation of CD44, Cyclin D2, GLIPR1 and PTEN in different cellular contexts such as the prostate cancer cells DU145 and LNCaP, and the breast cancer cells MCF-7

  • Comparison of the different promoters showed that MeCP2 and MBD2a repressed promoter- Cyclin D2 in all cell lines, whereas in MCF-7 cells MeCP2 repressed cell- all methylated promoters

  • MRNA expression analysis To determine the mRNA expression of CD44, Cyclin D2, GLIPR1 and PTEN, total RNA was extracted from DU145, LNCaP and MCF-7 cells using the RNeasy® Mini Kit (Qiagen, Hilden, Germany) according to the manufacturer's description

Read more

Summary

Introduction

The aim of the current study was to analyze the involvement of methyl-CpG binding proteins (MBDs) and histone modifications on the regulation of CD44, Cyclin D2, GLIPR1 and PTEN in different cellular contexts such as the prostate cancer cells DU145 and LNCaP, and the breast cancer cells MCF-7. Since global chromatin changes have been shown to occur in tumours and regions of tumour-associated genes are affected by epigenetic modifications, these may constitute important regulatory mechanisms for the pathogenesis of malignant transformation. In chromosomal regions of tumour-associated genes epigenetic modifications may constitute important regulatory mechanisms for the pathogenesis of malignant transformation [1]. Five MBDs have been identified: MBD1, MBD2, MBD3, MBD4 and MeCP2. These proteins are implicated in the transcriptional repression of methylated DNA [4,5]. MBD1 is alternatively spliced to produce five protein isoforms (PCM1, MBD1v1, MBD1v2, MBD1v3 and MBD1v4) which differ in the number of cysteine-rich (CXXC) domains and the carboxyl-terminal sequence. Two isoforms of MBD2 are known: MBD2a and MBD2b. MBD2a may act either as an activator or a repressor of transcription [7,8,9,10]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call