Abstract

Genetic transfer approaches have received recent consideration as potential treatment modalities for human central and peripheral nervous system (CNS and PNS, respectively) neurodegenerative disorders, including Parkinson's disease, Alzheimer's disease, and amyotrophic lateral sclerosis. Transplantation of genetically modified cells into the brain represents a promising strategy for the delivery and expression of specific neurotrophic factors, neurotransmitter-synthesizing enzymes, and cellular regulatory proteins for intervention in neurodegenerative diseases. The use of specific regulatable promoters may also provide potential control of gene expression required for dose-specific or time-specific therapeutic strategies. In this article, we review the potential use of activated promoters in ex vivo systems for the potential genetic therapy of neurodegenerative disorders, and then describe our own studies using the zinc-inducible metallothionein promoter for the regulated expression of nerve growth factor (NGF) in rodent brain transplants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.