Abstract

Microbial electromethanogenesis, relying on electrochemically active biofilm on biocathode to convert carbon dioxide to methane, provides a novel approach for renewable energy storage. One key factor that governs electron exchange and methane formation efficiencies is the electrode material. To promote methane production, a biocathode via modifying plain carbon stick with a layer of graphite felt (GF) (hereafter referred as “hybrid GF-biocathode”) was developed and evaluated in a two-chamber microbial electrolysis cells (MECs). Methane production with hybrid GF-biocathode reached 80.9mL/L at the potential of −1.4V after 24h of incubation with coulombic efficiency of 194.4%. The tests by flushing three substrates (CO2, N2 and H2–CO2 [80:20]) revealed that direct electron transfer rather than intermediate H2 contributed more to the electromethanogenesis. Cyclic voltammetry showed that GF enhanced the microbial electrocatalysis activity and reduced the cathode overpotential needed for methane production. Scanning electron microscope and fluorescence in situ hybridization analysis confirmed that the three-dimensional GF afforded the abundant space for the growth of electroactive microorganisms and promoted the electron exchange (e.g. cathode-to-cell etc.) via severing as “artificial pili”. This study reveals that GF with the open structure and high conductivity has the substantial potential to upgrade electromethanogenesis efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.