Abstract

This study is a trial to promote repairing of the rabbit skull bone gap between an autologous bone flap and the intact bone with biodegradable gelatin microspheres containing transforming growth factor-beta1 (TGF-beta1). A 10-mm diameter bone defect was prepared in rabbit skulls by drilling out a bone flap of 6 mm in diameter. After a surrounding gap defect of 2 mm was created and treated with 0.5 microg of free TGF-beta1 and gelatin microspheres containing 0.5 microg of free TGF-beta1, the circular autologous bone flap was placed in the center. Significant bone healing at the gap defect was observed 3 weeks after implantation of the TGF-beta1-containing gelatin microspheres. The bone mineral density (BMD) was significantly higher than that of other experimental groups. On the contrary, when applied with free TGF-beta1, a fibrous tissue initially infiltrated into the gap defect, resulting in impairing bone healing. The tissue response was similar to that at the defect implanted with empty gelatin microspheres and TGF-beta1-free phosphate-buffered saline solution alone. There was more space in the gap-filling bone in the 16-week view than the 3-week view. It is possible that this was an intermediate step along the way toward normal healing and formation of cancellous bone. We conclude that gelatin microspheres containing TGF-beta1 show promise as an agent to promote bone regeneration of subcritical size defects between surgically positioned autologous bone flaps and surrounding host bone.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call