Abstract
Modern technologies of photonics, astrophysics, medicine and security systems have a demand for development of new types of sensitive detectors and/or optimization of existing ones. As an example, a strong demand exists for improvement of the characteristics of highly sensitive detectors based on superconducting materials. One way to optimize the performance of such detectors is to select a suitable superconducting material. This is due to the fact that the technical characteristics of devices are determined by relaxation mechanisms of nonequilibrium processes that occur in the material upon absorption of electromagnetic radiation. In this paper, we focused on the study of the relaxation of nonequilibrium processes in superconducting materials such as highly boron-doped polycrystalline diamond films, highly disordered titanium nitride (TiN) films and ultrathin amorphous tungsten silicide films (WSi). The experimental data allowed us to determine the temperature dependence of the inelastic relaxation time in the studied materials. These results can help us to evaluate the applicability of these materials for the different types of superconducting detectors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.