Abstract

Highly effective gas sensors for detecting a range of hazardous and toxic gases were successfully applied in the present study using Zinc oxide (ZnO) nanomaterials. In this work, the horizontal vapor phase growth (HVPG) technique was perfectly capable of the synthesis of zinc oxide (ZnO) nanomaterials. The effect of the growth time with different dwell times was discussed by comparing the SEM-EDX analysis and photoluminescence characterization of the samples. Magnetic field (AMF) was also incorporated to determine the effect of AMF on the synthesis of ZnO nanomaterials. The results showed that the ZnO nanorods and root-like shapes are formed with more than 5 μm length and a few nm diameters. The optimum parameter showed the sensors are shiner than the less effective sensor when applied. The introduction of an external magnetic field led to a reduced energy band gap by a maximum of 15 %. The non-AMF band gap energy value is observed to be between 3.51 and 3.58 eV, while the value obtained using AMF is found to be between 2.94 and 3.22 eV. During the CO2 gas sensor test, AMF ZnO nanomaterial samples exhibited higher voltage and gradient compared to non-AMF samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.