Abstract

Polycrystalline GaN layers are grown on amorphous fused silica glass substrates by gas-source MBE using ion removed electron cyclotron resonance (ECR) radical cell. Polycrystalline GaN grown here shows a strong photoluminescence without deep-level emission. The emission peak with a wide spectral half-width is red-shifted from the excitonic emission of a GaN layer grown on a sapphire substrate. The peak is excitonic from the excitation power and temperature dependencies of the PL spectrum. Photoluminescence excitation spectra show that the polycrystalline GaN has a large Stokes shift. The results suggest that the polycrystalline GaN has a large potential fluctuation due to a grain to grain potential distribution and that the strong emission originates from the lower-energy tail of the absorption spectrum. Such optical properties indicate that the polycrystalline GaN layers grown on the glass substrates are promising to fabricate large area and low cost light-emitting devices and solar cells. Polycrystalline optical device technology will be indispensable for industrial applications as well as the polycrystalline and the amorphous Si devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.