Abstract
Rheumatoid arthritis (RA) remains a formidable healthcare challenge due to its chronic nature and potential for irreversible joint damage. Methotrexate (MTX) is a cornerstone treatment for RA but carries significant risks of adverse effects with repeated administration, necessitating the exploration of alternative delivery methods. Injectable hydrogels loaded with MTX for intra-articular injection present a promising solution, allowing sustained drug release directly into affected joints. However, current hydrogel systems often lack extended therapeutic periods and the ability to self-regulate drug release according to disease state. Furthermore, RA is associated with excessive production of reactive oxygen species (ROS), which exacerbates inflammation and joint damage. Herein, we developed an advanced injectable hydrogel (MPDANPs/MTX HA-PEG gel) based on “bio-orthogonal chemistry”, combining hyaluronic acid and polyethylene glycol (PEG) matrices co-loaded with mesoporous polydopamine nanoparticles (MPDANPs) and MTX. MPDANPs/MTX HA-PEG gel achieved prolonged, staged, and self-regulated MTX release, coupled with ROS scavenging capabilities for enhanced therapeutic efficacy. Due to its optimized MTX release behavior and significant ROS scavenging function, MPDANPs/MTX HA-PEG gel exhibited potent anti-inflammatory effects in collagen-induced arthritis (CIA) rats following a single intra-articular injection. Our findings highlight the potential of MPDANPs/MTX HA-PEG gel as a highly effective treatment strategy for RA, offering a promising avenue for improving patient outcomes.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have