Abstract
RNA interference (RNAi) is a powerful tool in gene function analysis and disease treatment, especially diseases that are ‘undruggable’ by classical small molecules. However, the RNAi applications are limited due to some defects, such as short duration and toxic side effects. New strategies are still needed to improve RNAi applications. Previous studies have illustrated that Epstein-Barr virus nuclear antigen 1 (EBNA-1) and the origin of plasmid replication (oriP) are critical factors for EBV latent gene expression, which can keep the replication of the EBV genome as an extrachromosomal element for a relatively long time. Here we report a plasmid expression system on the base of oriP and EBNA-1, which could produce protein as well as short interfering RNAs(siRNAs) for a long time in mammalian cells. siRNA expression mediated by this system causes efficient and specific down-regulation of gene expression. Except for analyzing gene function, this study also provided a new optional and practical way for protein and/or RNAi-based therapies that require enduring effect.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have