Abstract

The purpose of this study was to investigate histologic autofluorescence lifetimes and spectra of retinal pigment epithelium (RPE) on the transition from normal aging to RPE activation and migration in age-related macular degeneration (AMD). Autofluorescence lifetimes and spectra of 9 donor eyes were analyzed in cryosections by means of 2-photon excited fluorescence at 960 nm. Spectra were detected at 483 to 665 nm. Lifetimes were measured using time-correlated single photon counting in 2 spectral channels: 500 to 550 nm (short-wavelength spectral channel [SSC]) and 550 to 700 nm (long-wavelength spectral channel [LSC]). Fluorescence decays over time were approximated by a series of three exponential functions. The amplitude-weighted mean fluorescence lifetime was determined. Markers for retinoid activity (RPE65) and immune function (CD68) were immunolocalized in selected neighboring sections. We identified 9 RPE morphology phenotypes resulting in 399 regions of interest (ROIs) for spectral and 497 ROIs for lifetime measurements. RPE dysmorphia results in a shorter wavelength peak of spectral emission: normal aging versus RPE migrated into the retina (intraELM) = 601.7 (9.5) nm versus 581.6 (7.3) nm, P < 0.001, whereas autofluorescence lifetimes increase: normal aging versus intraELM: SSC 180 (44) picosecond (ps) versus 320 (86) ps, P < 0.001; and LSC 250 (55) ps versus 441 (76) ps, P < 0.001. Ectopic RPE within the neurosensory retina is strongly CD68 positive and RPE65 negative. In the process of RPE degeneration, comprising different steps of dysmorphia and migration, lengthening of autofluorescence lifetimes and a hypsochromic shift of emission spectra can be observed. These autofluorescence changes might provide early biomarkers for AMD progression and contribute to our understanding of RPE-driven pathology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call