Abstract
A time-resolved coherent anti-Stokes Raman technique is demonstrated that yields a spectral resolution beyond the linewidth obtained in spontaneous Raman spectroscopy. Two picosecond dye lasers, independently tunable with low timing jitter, are used. The coherent material excitation is generated by long pump pulses and monitored by short delayed probing pulses. Transiently narrowed Raman spectra are recorded by scanning the lasers over the resonances of interest and simultaneously monitoring the coherent scattering signal as a function of the excitation frequency. The technique is applied to molecular vibrations in liquids. The differences between the technique presented and standard coherent anti-Stokes Raman spectroscopy are demonstrated.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.