Abstract
A subpopulation of the pig inferior mesenteric ganglia (IMG) neurons projecting to the colon exhibit calbindin-like immunoreactivity. It is not known if there are any changes in the chemical coding patterns of these neurons during porcine proliferative enteropathy (PE). To answer this question, juvenile Large White Polish pigs with clinically diagnosed Lawsonia intracellularis infection (PE; n = 3) and a group of uninfected controls (C; n = 3) were compared. The retrograde tracer fast blue (FB) was injected into the descending colons of all animals and then tissue comprising IMGs from both groups was processed for double-labeling immunofluorescence with calbindin-D28k (CB) in combination with either tyrosine hydroxylase (TH), neuropeptide Y (NPY), somatostatin (SOM), vasoactive intestinal polypeptide (VIP), nitric oxide synthase, Leu-enkephalin, substance P, vesicular acetylcholine transporter, galanin, or pituitary adenylate cyclase-activating polypeptide. Immunohistochemistry revealed changes in the chemical coding pattern of calbindin-immunoreactive neurons in the inferior mesenteric ganglia of the pig. In control animals, FB/CB-positive neurons were immunoreactive to TH, NPY, SOM, and VIP. In the experimental group, TH-expressing neurons were unaffected, NPY-expressing neurons were increased, whereas the number of neurons immunoreactive to SOM or VIP was reduced. Changes in chemical coding of CB neurons during PE may play an important role in adaptation of these IMG cells under pathological conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.