Abstract

Linoleate metabolism via the cyclooxygenase pathway enhances the proliferation of mammary epithelial cells in serum-free culture in the presence of epidermal growth factor and insulin (Bandyopadhyay, G.K., Imagawa, W., Wallace, D., and Nandi, S. (1987) J. Biol. Chem. 262, 2750-2756). Prostaglandin E2 (PGE2) can fully substitute for linoleic acid provided endogenous hydroxyeicosatetraenoic acids (HETEs, lipoxygenase metabolites) are available. The PGE2 effect is partial if lipoxygenase activity is inhibited by nordihydroguaiaretic acid. Any combination of two HETEs out of three tested (5-, 12-, and 15-HETEs) stimulates growth synergistically with PGE2; and together (i.e. PGE2 + HETEs), they completely substitute for linoleate. In the absence of PGE2, maximal stimulation cannot be attained with HETEs. Exogenous 5-HETE, compared with 12- or 15-HETE, is preferentially incorporated by the mammary epithelial cells, and about 25-30% of it is retained esterified in phospholipids. The cellular level of nonesterified, free HETE is low. Radioimmunoassay revealed that the concentrations of 12- and 15-HETEs in the culture media (with or without added linoleate) were always higher than that of 5-HETE. Both intra- and extracellular free HETEs are rapidly metabolized by the cells. Since these cells are capable of producing eicosanoids from linoleate, periodic supplementation of the cultures with linoleate allows maintenance of higher HETE and PGE2 levels. Thus, it appears that not only are HETEs short-lived in the cell cultures, but cells handle 5-HETE differently than 12- and 15-HETEs. Whatever may be the pathways of interaction, synergism between HETEs and PGE2 seems to explain how linoleate stimulates the growth of mammary epithelial cells in the presence of epidermal growth factor and insulin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.