Abstract

Human adipose-derived mesenchymal stem cells (AD-MSCs) attracted much interest as a promising alternative to autologous chondrocytes and bone marrow-derived mesenchymal stem cells for cartilage regeneration. Developing a suitable culture technique to direct AD-MSCs into the chondrogenic lineage could be a crucial prerequisite for the cartilage defect repair application of AD-MSCs. Herein, we prepared the PEGDG-crosslinked porous three-dimensional (3D) hyaluronic acid (HA) scaffold and evaluated for its feasibility to induce proliferation and chondrogenic differentiation of the AD-MSCs. In addition, the effect of bone-morphogenetic protein-2 (BMP-2) and platelet-derived growth factor (PDGF) on chondrogenic differentiation was further investigated. Proliferation and chondrogenic differentiation were evaluated by cell morphology, DNA contents, s-GAG contents, and level of mRNA expression of relevant marker genes. When cultured with reference chondrogenic medium (RCM; serum-free DMEM-HG supplemented with 10 ng/mL of transforming growth factor-β1 (TGF-β1), 50 nM ascorbate, 100 nM dexamethasone, and 5 μg/mL of ITS), better proliferation and chondrogenic differentiation of AD-MSCs were obtained in the 3D HA scaffold culture as compared to the micromass culture, a standard 3D culture system. Moreover, the level of chondrogenic differentiation of AD-MSCs in the HA scaffold-RCM culture system was further increased by BMP-2, and decreased by PDGF. These results suggested that the HA scaffold with RCM was a promising chondrogenic culture system of AD-MSCs, and that BMP-2 could potentially serve as a chondrogenic supplement for AD-MSCs. However, PDGF was determined to be an inappropriate supplement based on its inhibition of the chondrogenic differentiation of AD-MSCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.