Abstract

Either testosterone or follicle-stimulating hormone (FSH) stimulates progesterone secretion by granulosa cells from rats but the combination of the two hormones increases progesterone production in a synergistic manner. We have investigated the effects of graded doses of prolactin (0, 0.02, 0.2, 2, or 10 micrograms/ml) alone or in combination with testosterone (0.5 microM), FSH (300 ng/ml), or FSH + testosterone on progesterone secretion by granulosa cells at two stages of differentiation. Relatively undifferentiated granulosa cells from immature, diethylstilbestrol-treated, hypophysectomized (HPX) rats were cultured in defined (serum-free) medium for 3 days. More highly differentiated granulosa cells were obtained on the morning of proestrus from the preovulatory follicles of 30-day-old rats induced to undergo an estrous cycle by injection with 4 IU pregnant mare's serum gonadotropin; these cells were cultured in medium containing 10% fetal bovine serum. Prolactin alone did not enhance the negligible secretion of progesterone by cells from HPX rats, but increased progesterone secretion by cells from proestrous rats. Prolactin significantly enhanced the stimulatory effects of testosterone or FSH alone on cells from both HPX and proestrous rats. When cultures containing both FSH + testosterone were treated with prolactin, progesterone secretion by cells from proestrous rats was significantly enhanced, whereas secretion by cells from HPX rats was significantly depressed. Therefore when cells from HPX rats were cultured with both FSH and testosterone, the direction of the effect of prolactin was reversed from that observed with prolactin + FSH or testosterone alone, and from that observed when cells from proestrous rats were cultured with prolactin + FSH + testosterone.(ABSTRACT TRUNCATED AT 250 WORDS)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.