Abstract

The oestrus cycle in the domestic bitch, a monoestrous species, differs considerably from that of other veterinary domestic animals species. In the bitch the combined use of eCG and hCG is effective to induce oestrus predictably and safely (Stornelli et al., Theriogenology, 78, 2012 and 1056). Although several studies were done to describe the hormonal changes during the canine oestrus cycle, to our knowledge none was done to describe the hormonal changes during induced follicular growth after the administration of eCG. The aim of this work was to study prolactin (PRL), insulin-like growth factor (IGF1) and androstenedione (ANDR) serum concentrations during follicular growth induced by a single dose of eCG administered to late anoestrous bitches. PRL and ANDR concentrations were lower before than after eCG TRT (before eCG vs pro-oestrus, oestrus and dioestrus; 4.3 ± 1.8 ng/ml vs 6.5 ± 1.6 ng/ml, p < 0.05; 0.08 ± 0.2 ng/ml vs 0.42 ± 0.16 ng/ml, p < 0.05). Conversely, IGF1 concentrations were similar before and after eCG TRT (286.0 ng/ml ±32.2, p > 0.53). Additionally, PRL concentrations were similar before oestrus compared to during oestrus and dioestrus (6.9 ± 1.7 ng/ml, p > 0.19). Furthermore, IGF1 concentrations were higher before and during oestrus compared to first day of dioestrus (286.1 ± 29.8vs 200.4 ± 29.2 ng/ml, p < 0.01). On the contrary, ANDR concentrations were lower before and during oestrus compared to first day of diestrum (0.35 ± 0.17 ng/ml and 0.38 ± 0.15 vs 0.68 ± 0.17 ng/ml, p < 0.05). These results show that treatment with a single injection of 50 IU/kg of eCG in late anoestrous bitches successfully induced changes in follicular growth which were paralleled with changes in PRL, IGF1 and ANDR serum concentration similar to those occurring during a normally occurring oestrous cycle. In addition, our results suggest that IGF1 in the bitch could play an important role in ovarian folliculogenesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.