Abstract

Projector-based embedding is a relatively recent addition to the collection of methods that seek to utilize chemical locality to provide improved computational efficiency. This work considers the interactions between the different proposed procedures for this method and their effects on the accuracy of the results. The interplay between the embedded background, projector type, partitioning scheme, and level of atomic orbital (AO) truncation are investigated on a selection of reactions from the literature. The Huzinaga projection approach proves to be more reliable than the level-shift projection when paired with other procedural options. Active subsystem partitioning from the subsystem projected AO decomposition (SPADE) procedure proves slightly better than the combination of Pipek-Mezey localization and Mulliken population screening (PMM). Along with these two options, a new partitioning criteria is proposed based on subsystem von Neumann entropy and the related subsystem orbital occupancy. This new method overlaps with the previous PMM method, but the screening process is computationally simpler. Finally, AO truncation proves to be a robust option for the tested systems when paired with the Huzinaga projection, with satisfactory results being acquired at even the most severe truncation level.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call