Abstract

This paper combines two classical theories, namely metric projective differential geometry and superintegrability. We study superintegrable systems on 2-dimensional geometries that share the same geodesics, viewed as unparametrized curves. We give a definition of projective equivalence of such systems, which may be considered the projective analog of (conformal) Stäckel equivalence (coupling constant metamorphosis). Then, we discuss the transformation behavior for projectively equivalent superintegrable systems and find that the potential on a projectively equivalent geometry can be reconstructed from a characteristic vector field. Moreover, potentials of projectively equivalent Hamiltonians follow a linear superimposition rule. The techniques are applied to several examples. In particular, we use them to classify, up to Stäckel equivalence, the superintegrable systems on geometries with one, non-trivial projective symmetry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.