Abstract
We present a novel approach for physics-based character skinning. While maintaining real-time performance it overcomes the well-known artifacts of commonly used geometric skinning approaches, it enables dynamic effects, and it resolves local self-collisions. Our method is based on a two-layer model consisting of rigid bones and an elastic soft tissue layer. This volumetric model is easily and efficiently computed from an input surface mesh of the character and its underlying skeleton. In particular, our method neither requires skinning weights, which are often expensive to compute or tedious to hand-tune, nor a complex volumetric tessellation, which fails for many real-world input meshes due to self-intersections.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have