Abstract

The system of isentropic Euler equations in the potential flow regime can be considered formally as a second order ordinary differential equation on the Wasserstein space of probability measures. This interpretation can be used to derive a variational time discretization. We prove that the approximate solutions generated by this discretization converge to a measure-valued solution of the isentropic Euler equations. The key ingredient is a characterization of the polar cone to the cone of optimal transport maps.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.