Abstract
Isotonic regression is the problem of fitting data to order constraints. This problem can be solved numerically in an efficient way by successive projections onto order simplex constraints. An algorithm for solving the isotonic regression using successive projections onto order simplex constraints was originally suggested and analyzed by Grotzinger and Witzgall. This algorithm has been employed repeatedly in a wide variety of applications. In this paper we briefly discuss the isotonic regression problem and its solution by the Grotzinger-Witzgall method. We demonstrate that this algorithm can be appropriately modified to run on a parallel computer with substantial speed-up. Finally we illustrate how it can be used to pre-process mass spectral data for automatic high throughput analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Research of the National Institute of Standards and Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.