Abstract

Precipitation fluctuations are continuously threatening the environment and may cause huge economic losses. In present study, the precipitation over China has been evaluated under five principal shared socioeconomic pathways (SSPs) scenarios during 2015–2099 based on eight CMIP6 models bias-corrected by the method of Equidistant Cumulative Distribution Functions. The results showed that (1) the simulated precipitation in China was in good agreement with observed precipitation for the eight CMIP6 models during 1961–2014, especially for the UKESM1-0-LL and MIROC6. However, the simulated annual mean precipitation has been significantly overvalued in the Southwest River basin (> 50%), while it was undervalued in the higher elevations of the Northwest River basin (< − 60%); (2) the annual mean precipitation will show a fluctuating upward trend during 2015–2099 over China under all the SSPs scenarios for the eight CMIP6 models. The rate of precipitation increase over north China will be higher than that in south China, especially in the Northwest River basin (reach 57.44% in the 2090s under the SSP5-8.5 for the ensemble mean). This increase of the precipitation in north China might alleviate the shortage of water there, but will not change the pattern of more rain in the south and less in the north; (3) in the southeastern basins, the precipitation of the multi-model ensemble (MME) and MIROC6 during 2011–2020 will be lower than that of 1961–2010 (− 6.53 to − 0.06%) under all SSPs scenarios. While the precipitation will increase obviously under all the SSPs scenarios, especially for the SSP5-8.5 scenario after the year of 2060; (4) the bias of the MME was much lower than that of individual CMIP6 models, and the bias of lower SSPs scenarios will be relatively lower. Generally, uncertainty ranges of precipitation fluctuations in north China (15.31–79.26%) will be higher than those in south China (16.06–7.55%). These findings revealed the projections and uncertainties of CMIP6 precipitation over China, which will be helpful for a better understanding of the future evolution of precipitation in China at large scale and in other regions of the world.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call