Abstract
Accurately assessing future land use/cover change (LUCC) and habitat quality (HQ) is vital for ensuring sustainable use of coastal ecosystem services, but most studies ignore the effects of seawater inundation. This study developed a framework based on the PLUS model and InVEST-HQ model that considers seawater inundation due to sea level rise (SLR) and land subsidence. We used this framework to simulate future LUCC and HQ under different scenarios in the Yellow River Delta (YRD). The results showed: (1) From 1991 to 2020, natural wetlands decreased by 39.87 %, non-wetlands decreased by 3.06 %, and artificial wetlands increased by 730.71 %. The overall HQ showed a decreasing trend, with the largest decrease in non-wetlands. (2) Land subsidence occurred in 93.26 % of the YRD, with a subsidence rate of −36.55 mm/year. Underground brine mining is the most important driving factor. About 6.81 %∼11.16 % of the area will be inundated in 2035, and about 9.39 %∼19.27 % of the area will be inundated in 2050. (3) Future multi-scenario simulations show that the Ecological-Protection scenario can minimize the ecological losses caused by seawater inundation. The simulation of future HQ will be underestimated when seawater inundation is not considered. Our study shows that seawater inundation caused by land subsidence and SLR must be taken into account when simulating LUCC and HQ in coastal areas.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.