Abstract

Precipitation changes over South Korea were projected using five regional climate models (RCMs) with a horizontal resolution of 12.5 km for the mid and late 21st century (2026-2050, 2076- 2100) under four Representative Concentration Pathways (RCP) scenarios against present precipitation (1981-2005). The simulation data of the Hadley Centre Global Environmental Model version 2 coupled with the Atmosphere-Ocean (HadGEM2-AO) was used as boundary data of RCMs. In general, the RCMs well simulated the spatial and seasonal variations of present precipitation compared with observation and HadGEM2-AO. Equal Weighted Averaging without Bias Correction (EWA_NBC) significantly reduced the model biases to some extent, but systematic biases in results still remained. However, the Weighted Averaging based on Taylor’s skill score (WEA_Tay) showed a good statistical correction in terms of the spatial and seasonal variations, the magnitude of precipitation amount, and the probability density. In the mid-21st century, the spatial and interannual variabilities of precipitation over South Korea are projected to increase regardless of the RCP scenarios and seasons. However, the changes in area-averaged seasonal precipitation are not significant due to mixed changing patterns depending on locations. Whereas, in the late 21st century, the precipitation is projected to increase proportionally to the changes of net radiative forcing. Under RCP8.5, WEA_Tay projects the precipitation to be increased by about +19.1, +20.5, +33.3% for annual, summer and winter precipitation at 1-5% significance levels, respectively. In addition, the probability of strong precipitation (≥ 15 mm d-1) is also projected to increase significantly, particularly in WEA_Tay under RCP8.5.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.