Abstract

AbstractClimate change impacts are among the many challenges facing management of large cities. This study assesses the important climate variables under climate change impacts in Tehran, Iran, for 2021–2040. Eight Coupled Model Intercomparison Project, Phase 5 (CMIP5) models under the scenarios of Representative Concentration Pathway 2.6 (RCP2.6), RCP4.5, and RCP8.5 were used, and seven climate variables were projected utilizing the Fuzzy DownScaling Model (FDSM) and the Statistical DownScaling Model (SDSM). The FDSM and SDSM results underline the high performance of both models and the important capability of the FDSM, showing the increasing trend of annual changes in mean temperature (Tmean) and maximum temperature (Tmax), precipitation, and the mean wind speed (Wmean). The maximum increase of annual average in Tmean and Tmax and the Wmean among all scenarios will be in the order of 1.29 °C, 1.57 °C, and 0.8 m/s (for RCP8.5), and also the maximum increases of annual average precipitation will be 10 mm (for RCP2.6). Furthermore, the monthly long-term averages of Tmean and Tmax in all three scenarios show significant increases in summer. For precipitation, relative stability in summer, and increases in winter and early spring are predicted, but the changes in minimum temperature, relative humidity, and sunshine hours indicate relative stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.