Abstract

The Paris Agreement aims to limit the global temperature increase to below 2 °C above pre-industrial levels and to pursue efforts to limit the increase to even below 1.5 °C. Now, it should be asked what benefits are in pursuing these two targets. In this study, we assessed the temperature–mortality relationship using a distributed lag non-linear model in seven major cities of South Korea. Then, we projected future temperature-attributable mortality under different Representative Concentration Pathway (RCP) and Shared Socioeconomic Pathway (SSP) scenarios for those cities. Mortality was projected to increase by 1.53 under the RCP 4.5 (temperature increase by 2.83 °C) and 3.3 under the RCP 8.5 (temperature increase by 5.10 °C) until the 2090s, as compared to baseline (1991–2015) mortality. However, future mortality is expected to increase by less than 1.13 and 1.26 if the 1.5 °C and 2 °C increase targets are met, respectively, under the RCP 4.5. Achieving the more ambitious target of 1.5 °C will reduce mortality by 12%, when compared to the 2 °C target. When we estimated future mortality due to both temperature and population changes, the future mortality was found to be increased by 2.07 and 3.85 for the 1.5 °C and 2 °C temperature increases, respectively, under the RCP 4.5. These increases can be attributed to a growing proportion of elderly population, who is more vulnerable to high temperatures. Meeting the target of 1.5 °C will be particularly beneficial for rapidly aging societies, including South Korea.

Highlights

  • The frequent occurrence of high temperature due to global warming has serious health impacts.For example, extreme weather events such as heat waves are seen at increased frequencies, intensities, durations, and spatial extents

  • This study examined future mortality based on temperature changes under Representative Concentration Pathways (RCPs) as well as based on population changes under Shared Socioeconomic Pathways (SSPs) in seven major cities of South

  • This study examined the benefit of limiting the temperature increase below 1.5 ◦ C or 2 ◦ C

Read more

Summary

Introduction

Extreme weather events such as heat waves are seen at increased frequencies, intensities, durations, and spatial extents. These changes are associated with a higher rate of mortality in humans [1,2,3,4,5]. Besides the exposure to elevated temperatures, climate change affects humans in several ways. Estimating the health burden of climate change is of great interest to researchers, and several studies have examined this burden [6,7,8,9,10,11,12,13,14]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call