Abstract

Conditional forecasts of US economic and energy sector activity are developed using information from a dynamic, data-rich environment. The forecasts are conditional on a path for carbon dioxide emissions outlined in the US Environmental Protection Agency’s Clean Power Plan (CPP) and are estimated based on a factor-augmented autoregressive framework. Results suggest that overall growth will be slower under the CPP than it would otherwise; however, economic growth and CO2 reductions can be achieved simultaneously. There are little differences between unconditional (business-as-usual) and conditional forecasts of the variables in the early part of the forecast period; the impacts of the CPP are small while the constraints on carbon dioxide are less stringent. The results serve as a data-driven complement to structural analyses of policy change in the energy sector.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.