Abstract

Abstract Riverine ecosystems are dependent in large part on the climate of the region, and climate change is expected to alter climatic factors of interest, such as precipitation, temperature, and evapotranspiration. In central Texas, precipitation is expected to decrease while temperature increases as the climate changes. Drought and flooding events are also expected to increase in the region, which will also affect streamflow and stream temperature in riverine ecosystems. Numerous studies have assessed the potential impacts of climate change on riverine species. This study examines the projected climate changes, determines potential changes in streamflow and stream temperature for river basins in central Texas, and assesses the appropriate uses of climate projections for riverine species impact assessments, using the Texas fatmucket (Lampsilis bracteata) as a case study. Previously established regression methods were used to produce projections of streamflow and stream temperature. This study finds that streamflow is projected to decrease and stream temperature is projected to increase. Using thermal tolerance thresholds previously determined for the Lampsilis bracteata, this study also finds that the lethal temperature events for the Lampsilis bracteata will increase. This study makes several recommendations on the use of downscaled climate projections for impact assessments for riverine species such as the Lampsilis bracteata.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call