Abstract

The far Eastern Tropical Pacific (EPAC) and Western Colombia are one of the rainiest places on Earth, and the Choco low-level jet (ChocoJet) is one of the processes that influence the formation of copious precipitation and convection organization in this region. This study investigates the projected changes in precipitation in this region using historical and future simulations based on model output from two models contributing to the Coupled Model Intercomparison Project phase 6 (CMIP6). In close agreement with observations, models simulate that ChocoJet intensity is directly proportional to precipitation in the region. This relationship is also found far inland in Central America, the northwestern part of South America Pacific Coast, and the intermountain valleys of the Colombian Andes. Late 21st century simulations show a southward migration in mean and regional daily precipitation consistent with a decreased ChocoJet intensity. The weaker ChocoJet is related to a projected increase in EPAC tropical sea surface temperatures (SSTs) and an increased frequency and intensity of the warm phase of the Niño 1+2 SST interannual variability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call