Abstract

Cumulative data suggest that neuroinflammation plays a prominent role in Alzheimer's disease (AD) pathogenesis. The purpose of this work was to assess if patients with AD present a specific cerebrospinal fluid (CSF) cytokine profile and if it correlates to disease progression. We determined the levels of 27 cytokines in CSF of patients with AD and compared them with patients with frontotemporal dementia and nondemented controls. In addition, we correlated the cytokine levels with cognitive status and disease progression after 12 months. Patients with AD had higher levels of proinflammatory and anti-inflammatory cytokines (eotaxin, interleukin [IL]-1ra, IL-4, IL-7, IL-8, IL-9, IL-10, IL-15, granulocyte colony-stimulating factor, monocyte chemotactic protein 1, platelet-derived growth factor, tumor necrosis factor alfa) compared to nondemented controls. There was a negative correlation between the disease progression and the levels of several cytokines (IL-1β, IL-4, IL-6, IL-9, IL-17A, basic fibroblast growth factor, granulocyte colony-stimulating factor, granulocyte-macrophage colony-stimulating factor, interferon gamma, macrophage inflammatory proteins-1β). To the best of our knowledge, this is the first study reporting a “protective” role of the upregulation of specific intrathecal cytokine levels in AD. This finding supports that a fine “rebalancing” of the immune system represents a new target in AD therapeutic approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.