Abstract

Unverricht-Lundborg type progressive myoclonus epilepsy (EPM1, OMIM 254800) is an autosomal recessive disorder characterized by onset at the age of 6 to 16 years, incapacitating stimulus-sensitive myoclonus and tonic-clonic epileptic seizures. It is caused by mutations in the gene encoding cystatin B. Previously, widespread white matter changes and atrophy has been detected both in adult EPM1 patients and in 6-month-old cystatin B–deficient mice, a mouse model for the EPM1 disease. In order to elucidate the spatiotemporal dynamics of the brain atrophy and white matter changes in EPM1, we conducted longitudinal in vivo magnetic resonance imaging and ex vivo diffusion tensor imaging accompanied with tract-based spatial statistics analysis to compare volumetric changes and fractional anisotropy in the brains of 1 to 6 months of age cystatin B–deficient and control mice. The results reveal progressive but non-uniform volume loss of the cystatin B–deficient mouse brains, indicating that different neuronal populations possess distinct sensitivity to the damage caused by cystatin B deficiency. The diffusion tensor imaging data reveal early and progressive white matter alterations in cystatin B–deficient mice affecting all major tracts. The results also indicate that the white matter damage in the cystatin B–deficient brain is most likely secondary to glial activation and neurodegenerative events rather than a primary result of CSTB deficiency. The data also show that diffusion tensor imaging combined with TBSS analysis provides a feasible approach not only to follow white matter damage in neurodegenerative mouse models but also to detect fractional anisotropy changes related to normal white matter maturation and reorganisation.

Highlights

  • Unverricht-Lundborg disease, known as a progressive myoclonus epilepsy type 1 (EPM1, OMIM 254800), is an autosomal recessive neurodegenerative disorder and the most common cause of progressive myoclonus epilepsy

  • In order to clarify the spatiotemporal progression of the brain pathology, this study aims to quantify the dynamics of brain atrophy and white matter (WM) changes in Cstb-/- mice from 1 month of age up to the fully symptomatic age of 6 months using in vivo magnetic resonance imaging (MRI) for detecting volumetric changes and ex vivo diffusion tensor imaging (DTI) with tract-based spatial statistics (TBSS) analysis for detecting changes in WM integrity [14]

  • It is worth noting that the difference in volume between the groups was accentuated over the study period as the brain volume in the control group continued to grow, whilst in the Cstb-/- group, the brain volume decreased from 1 month onwards

Read more

Summary

Introduction

Unverricht-Lundborg disease, known as a progressive myoclonus epilepsy type 1 (EPM1, OMIM 254800), is an autosomal recessive neurodegenerative disorder and the most common cause of progressive myoclonus epilepsy. EPM1 is characterized by onset at age of 6–16 years and the symptoms include stimulus-sensitive myoclonus, tonic-clonic epileptic seizures and ataxia [1]. EPM1 is most commonly caused by a homozygous dodecamer repeat expansion mutation in the promoter region of the cystatin B (CSTB) gene, thirteen other disease-causing mutations in CSTB are currently known [2– 5]. The causative mutations lead to reduced expression of the cystatin B (CSTB) protein [6,7] that is a ubiquitously expressed inhibitor of lysosomal cysteine cathepsins B, H, K, L, and S. Despite the fact that the causative gene mutations for EPM1 are known, the underlying mechanisms leading to the characteristic symptoms of the disease remain elusive. EPM1 patients do not show major cognitive decline, histopathological and imaging studies have confirmed atrophic changes on several brain regions of adult EPM1 patients, affecting both grey matter (GM) and white matter (WM) [1,8,9]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call