Abstract

Simplifying polygonal curves at different levels of detail is an important problem with many applications. Existing geometric optimization algorithms are only capable of minimizing the complexity of a simplified curve for a single level of detail. We present an O(n3m)-time algorithm that takes a polygonal curve of n vertices and produces a set of consistent simplifications for m scales while minimizing the cumulative simplification complexity. This algorithm is compatible with distance measures such as the Hausdorff, the Fréchet and area-based distances, and enables simplification for continuous scaling in O(n5) time. To speed up this algorithm in practice, a technique is presented for efficiently constructing many so-called shortcut graphs under the Hausdorff distance, as well as a representation of the shortcut graph that enables us to find shortest paths in anticipated O(nlog⁡n) time on spatial data, improving over O(n2) time using existing algorithms. Experimental evaluation of these techniques on geospatial data reveals a significant improvement of using shortcut graphs for progressive and non-progressive curve simplification, both in terms of running time and memory usage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call