Abstract
In recent years, carbon fiber reinforced plastics (CFRP) have attracted widespread attention in many industrial fields such as aerospace, automobiles, and high-speed railways. It has become a trend to replace traditional aluminum alloys and steels with CFRP in certain key components in order to achieve a better lightweight effect. However, due to the huge difference in the performance of metal materials and CFRP, problems such as unreasonable structural design and insufficient weight reduction may occur during the material replacement process. In order to solve the above problems, a progressive optimization method was proposed by this article. This progressive optimization method includes the conceptual design stage and the detailed design stage. The conceptual design stage includes modal analysis and topography optimization. The detailed design stage involves the weight reduction analysis of components, including the optimization of fiber layup angle, stacking sequence, and thickness. This article takes a CFRP key component as an example to verify the feasibility of the optimization method. Compared with the traditional method, using the optimization method, the structural stability of key components is improved. The weight reduction ratio of key components reaches 61.1%. Finally, a test sample was manufactured according to the optimized results by molding and RTM molding process, the actual weight reduction ratio is 57%, and the sample successfully passed the tests required by the relevant standards. These results indicate that the proposed progressive optimization method has great application potential in the design of CFRP lightweight structures in the aerospace field.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have