Abstract

Hyperspectral imaging, which is characterized by its abundant spectral and spatial information, can effectively identify and detect ground objects. In order to detect moving targets and relieve the stress of big data storage, real-time processing of anomaly detection is greatly desired. This paper investigates both global and local real-time implementations of the most widely used RX detector in a line-by-line fashion. Firstly, global and local causal frameworks are designed to meet the causality, which is one requirement of real-time character. Secondly, taking advantage of the Woodbury matrix identity, recursive update equations of the inverse covariance matrix and background data estimate mean are derived, thereby achieving very low computational complexity. As for local real-time architecture, multiple local semi-windows are designed to simultaneously detect all pixels of a data line. This designation has an advantage that it is very beneficial for the implementation of real-time anomaly detection on graphics processing units. The proposed global and local real-time strategies have been deeply analyzed summarizing that the computational complexity is greatly reduced under the comparable detection accuracy. This is finally validated by experimental results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.