Abstract
We discuss progressive Gelfand-Shilov spaces consisting of analytic signals with almost exponential decay in time and frequency variables. It is shown that such signals enjoy an additional localization property. We define wavelet transform and inverse wavelet transform in (progressive) Gelfand-Shilov spaces and study their continuity properties. It is shown that with a slightly faster decay in domain we may control the decay of the wavelet transform independently in each variable.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.