Abstract

In this study, the nonlocal, nonordinary state-based peridynamics (NOSBPD) is introduced as a novel regularization technique to study the strain localization and progressive failure of soil slopes due to strain softening behavior. The NOSBPD formulations are introduced first, and then the strain-softening Mohr–Coulomb model is incorporated into the nonlocal framework. The implicit formulations of the nonlinear NOSBPD model under the plane strain condition combined with the energy dissipation-based arc-length method to avoid the limitations of the force and displacement control in the nonlinear analysis are given. Numerical examples, including the plane strain biaxial experiments and slope models, validate the effectiveness of the proposed method in terms of alleviating mesh sensitivity. The results show that this nonlocal method can remove the mesh dependence, and the localized shear band is related to the nonlocal parameter δ. The proposed method involves being able to capture strength mobilization in different parts of the sliding surface during the progressive failure process of the soil slope. It can avoid the dilemma that the peak strength is too dangerous and the residual strength is too conservative due to the rigid body assumption in the limit equilibrium method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.