Abstract
We present a fast and accurate measurement technique for quasi-static magnetic fields by employing a progressive sampling method in an unconfined input space. The proposed machine learning algorithm is tested against uniform sampling on printed circuit board test structures and a buck converter. We prove allocation of multiple, separated regions with predefined lateral field limits at MHz frequencies. The feasibility of equivalent magnetic dipole source modeling based on a small number of samples is demonstrated. Compared to uniform testing, progressive expansion sampling identifies contours of given field limits in less than 3% of the reference measurement time.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have