Abstract

SummaryIn this paper, the progressive collapse performance analysis of precast reinforced concrete (RC) structures is performed. A numerical simulation framework for precast RC structures is developed on the basis of the OpenSEES software, where the fiber frame element is used for beam and column type members and Joint2D element is used for the beam‐to‐column connections. The conjugated material models are then introduced, and a min–max failure criterion is imposed on the original models to reflect the steel fracture and concrete crushing when the structure is undergoing progressive collapse. In addition, to overcome the computational difficulties arisen from progressive collapse behavior, two enhanced nonlinear solutions , that is, the consistent quasi‐Newton algorithm and the explicit KR‐α algorithm, are employed, respectively, for static and dynamic analysis. A 10‐storey prototype precast RC structures is designed to verify the developed numerical framework, and the progressive collapse resisting mechanism of the structures is investigated through both static pushdown analysis and dynamic column‐removal analysis. Finally, influences of some typical parameters in precast RC structures on their progressive collapse performance are studied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.