Abstract

This paper uses structural optimization techniques to cost-effectively design seismic steel moment frames with enhanced resistance to progressive collapse, which is triggered by the sudden removal of critical columns. The potential for progressive collapse is assessed using the alternate path method with each of the three analysis procedures (i.e., linear static, nonlinear static, and nonlinear dynamic), as provided in the United States Department of Defense United Facilities Criteria (UFC) Design of Buildings to Resist Progressive Collapse. As a numerical example, member sizes of a two-dimensional, nine-story, three-bay regular steel immediate moment frame are optimally determined such that the total steel weight is minimized while the design satisfies both AISC seismic provisions and UFC progressive collapse requirements. Optimization results for the example frame reveal that the traditional minimum weight seismic design, which does not explicitly consider progressive collapse, fails to meet the UFC alternate path criteria associated with any analysis procedure. Progressive collapse design optimization using the linear static procedure produces the most conservative and consequently heaviest design against progressive collapse. In contrast, the more accurate nonlinear static and dynamic procedures lead to more economical designs with UFC-acceptable resistance to progressive collapse, at the expenses of considerable modeling and computing efforts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.