Abstract
AbstractTo estimate appearance parameters, traditional SVBRDF acquisition methods require multiple input images to be captured with various angles of light and camera, followed by a post‐processing step. For this reason, subjects have been limited to static scenes, or a multiview system is required to capture dynamic objects. In this paper, we propose a simultaneous acquisition method of SVBRDF and shape allowing us to capture the material appearance of deformable objects in motion using a single RGBD camera. To do so, we progressively integrate photometric samples of surfaces in motion in a volumetric data structure with a deformation graph. Then, building upon recent advances of fusion‐based methods, we estimate SVBRDF parameters in motion. We make use of a conventional RGBD camera that consists of the colour and infrared cameras with active infrared illumination. The colour camera is used for capturing diffuse properties, and the infrared camera‐illumination module is employed for estimating specular properties by means of active illumination. Our joint optimization yields complete material appearance parameters. We demonstrate the effectiveness of our method with extensive evaluation on both synthetic and real data that include various deformable objects of specular and diffuse appearance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.