Abstract

GaP/active-Si junctions were grown by metalorganic chemical vapor deposition via a previously developed process that yields GaP-on-Si integration free of heterovalent-related defects. N-type Si emitter layers were grown on p-type (100)-oriented Si substrates, followed by the growth of n-type GaP window layers, to form fully-active sub-cell structures compatible with integration into monolithic III-V/Si multijunction solar cells. Si bulk minority carrier lifetime was found to track the epitaxial process, with initial degradation followed by full recovery. Fabricated test devices from in-situ (all-epitaxial) GaP/Si structures yielded good preliminary performance characteristics and demonstrate great promise for the epitaxial sub-cell approach. Additional test structures based on ex-situ diffusion processed solar wafers demonstrate the impact and importance of back surface field layers for such sub-cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.